A Class of Randomized Primal-Dual Algorithms for Distributed Optimization
نویسندگان
چکیده
Based on a preconditioned version of the randomized block-coordinate forward-backward algorithm recently proposed in [23], several variants of block-coordinate primal-dual algorithms are designed in order to solve a wide array of monotone inclusion problems. These methods rely on a sweep of blocks of variables which are activated at each iteration according to a random rule, and they allow stochastic errors in the evaluation of the involved operators. Then, this framework is employed to derive block-coordinate primal-dual proximal algorithms for solving composite convex variational problems. The resulting algorithm implementations may be useful for reducing computational complexity and memory requirements. Furthermore, we show that the proposed approach can be used to develop novel asynchronous distributed primal-dual algorithms in a multi-agent context.
منابع مشابه
Primal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملDSCOVR: Randomized Primal-Dual Block Coordinate Algorithms for Asynchronous Distributed Optimization
Machine learning with big data often involves large optimization models. For distributed optimization over a cluster ofmachines, frequent communication and synchronization of allmodel parameters (optimization variables) can be very costly. A promising solution is to use parameter servers to store different subsets of the model parameters, and update them asynchronously at different machines usi...
متن کاملConvergence Rate Analysis of Primal-Dual Splitting Schemes
Primal-dual splitting schemes are a class of powerful algorithms that solve complicated monotone inclusions and convex optimization problems that are built from many simpler pieces. They decompose problems that are built from sums, linear compositions, and infimal convolutions of simple functions so that each simple term is processed individually via proximal mappings, gradient mappings, and mu...
متن کاملGradient Primal-Dual Algorithm Converges to Second-Order Stationary Solutions for Nonconvex Distributed Optimization
In this work, we study two first-order primal-dual based algorithms, the Gradient Primal-Dual Algorithm (GPDA) and the Gradient Alternating Direction Method of Multipliers (GADMM), for solving a class of linearly constrained non-convex optimization problems. We show that with random initialization of the primal and dual variables, both algorithms are able to compute second-order stationary solu...
متن کاملCommunication-Efficient Distributed Primal-Dual Algorithm for Saddle Point Problem
Primal-dual algorithms, which are proposed to solve reformulated convex-concave saddle point problems, have been proven to be effective for solving a generic class of convex optimization problems, especially when the problems are ill-conditioned. However, the saddle point problem still lacks a distributed optimization framework where primal-dual algorithms can be employed. In this paper, we pro...
متن کامل